工程数学A 陈为华
《高等数学》为后续学生学习专业课程做准备,改变原高等数学课程内容和体系,加强结构与内容与专业课程知识和必须能力的连贯性,采用“教、学、做”相结合,以实用能力为主导的教学方式,加强学生能力的培养,使学生主动地参与到教学过程中。
《高等数学》课程内容包括:
1.一元函数微积分、微分方程的基本思想方法、知识结构,使学生能运用微分、积分和微分方程进行简单的专业问题或案例分析并能求解。
2.向量与空间解析几何的基本思想方法、知识结构,使学生能利用向量建立空间平面、直线的方程,判断线线、面面、线面之间的位置关系,了解曲面在生活中的应用。
3.二元函数的几何意义、二元微分的基本思想方法、知识结构,使学生能建立简单的专业或实际问题的数学模型,并能求解。
4.无穷级数的基本概念、基本思想方法、知识结构,使学生会判断级数的敛散性,能将函数展开成幂级数。
5.拉普拉斯变换的基本思想方法、知识结构,使学生能利用拉氏变换求解线性微分方程。
6.数学建模的概念、步骤和过程,使学生能建立简单实际问题的数学模型。