模块4 报警信息检测及故障排查

- 4.1 系统中常见报警信息
- 4.2 伺服驱动器报警信息
- 4.3 控制器报警信息

4.1 系统中常见报警信息

- 4.1.1 系统信息类型
- 系统信息类型分为32 种,8 个组别,通过对组别进行选择,可在信息列表中限制只显示同一组别的系统信息,如错误或警告等。可以通过查看系统报警所显示的信息图标,初步判断机器人报警的原因和故障,如图4-2 所示。
- 系统的信息类型图标和说明见表4-1。
- 4.1.2 系统信息状态
- 系统信息状态表示当前系统信息的操作级别和当前信息所处状态。系统信息状态说明见表4-2。

- 4.2.1 伺服驱动器按键功能
- 伺服驱动器面板及按键如图4-3 所示。
- 在其显示面板下方有四个按键,分别是MODE、INC、DEC 和ENTER 。各按键的功能见表4-3。
- 4.2.2 伺服驱动器报警及其诊断
- 1. 伺服驱动器报警号及其说明
- 机器人伺服电动机在工作中遇到问题时,示教器报警管理界面中出现报警状态,会在电控柜内其相应的伺服驱动器显示屏中出现报警号,如图4-4 所示。

- 常见的伺服驱动器报警见表4-4。
- 其中, A45、A46、A47、A48、A51 需要对绝对值报警清除, 才可对报警复位。由于多圈信息已不对, 所以通常要将多圈数据清零。
- 2. 部分报警号产生的原因及解决办法
- 部分报警号产生的原因及解决办法如下:
- (1) 过载报警A04
- 产生原因:
- ①机械卡死(或机器人碰撞)。
- ②电动机抱闸没有打开。

- ③动力线缺相。
- 解决办法:
- 1) 机械卡死
- ①清除驱动器A04 报警信息。
- ②将机器人恢复至安全位置。
- ③查看各轴零点是否偏移,根据需要进行零点恢复。
- 2) 电动机抱闸没有打开
- ①首先测量本体抱闸线是否断路(41、42、43、44、45、46)。
- ②测量继电器模块上对应的轴抱闸是否有24 V 直流电压(41、42、43、44、45、46)。

- ③查看伺服电动机的抱闸线是否接触不良。
- 3) 动力线缺相
- ①检查驱动器伺服电动机插头输出电压是否正常(U、V、W)。
- ②电柜和机器人本体上的航空插头是否有退针。
- (2) 编码器报警A10、A11
- 产生原因:
- ①编码器接头接触不良或没有插。
- ②编码器电缆损坏。
- ③电动机编码器硬件损坏。

- 解决办法:
- ①检查插头, 重新接好。
- ②检查电缆有误损坏。
- ③无法修复,需要维修。避免方法:安装电动机时,不可用力敲击电动机轴或编码器部件。
- (3) 过流报警A12
- 产生原因:
- 伺服驱动器与伺服电动机间的配线有误或短路。
- 解决办法:

- 检查配线,进行正确配线。
- (4) 驱动器A47 报警
- 1) 问题现象
- ①驱动器报警A47。
- ②更换新3.6 V 电池后, 关机时间长了以后, 开机还会报A47。
- 2) 产生原因
- ①编码器航插(公插头)弯曲了。
- ②编码器对应的正负极接反了。
- 3) 解决办法

- ①更换新的航插针(需退针器、航插针、内六角扳手、螺丝刀、新的3.6 V 电池带盒子)。
- ②调换两根正负极线。
- (5) 上电驱动无显示,或只显示"bb",电动机不运行
- 1) 上电驱动无显示
- 解决办法:
- 接线错误,控制板未得电,即L1C、L2C 未得电。
- 2) 显示 "bb", 电动机不运行
- 解决办法:

- ①伺服没有使能。
- 给伺服使能信号。
- ②驱动没有得电。
- 接线错误,驱动板未得电,即L1、L2、L3 未得电。
- · (6) A46 (多圈信息溢出)
- 产生原因:
- 编码器数据超出范围。
- 解决办法:
- 清除驱动器上的A46 报警代码(Fn010、Fn011)。
- (7) A51 (编码器多圈信息出错)

- 产生原因:
- ①编码器未接电池或者电池电压不足3.6 V。
- ②电压正常情况下,驱动器未接电,电动机因外部原因转动加速度过大。
- 解决办法:
- ①编码器未接电池或者电池电压不足3.6 V: 清除驱动器A47 报警 (Fn010、Fn011)。
- ②电压正常情况下,驱动器未接电,电动机因外部原因转动加速度过大:清除驱动器报警A51 (Fn010、Fn011)。

- 方法如下:
- · a. 按MODE 键, 选择辅助功能模式。
- b. 按INC 键或DEC 键, 选择清除绝对值编码器相关错误的功能号码 Fn011。
- c. 按下ENTER 键, 显示如下:
- · d. 按下MODE 键进行清除操作。

- e. 操作完成。
- ③检测编码器线是否连接好。
- ④更换新的驱动器。
- · (8) A50 (编码器通信超时)
- 产生原因及解决办法:
- 1) 原因
- 编码器线没连接好。
- 解决办法:
- ①检查编码器线是否通路;

- ②本体线、航空插头、驱动器上CN2 插头线是否接触不好。
- 2) 原因
- 编码器信号受干扰。
- 解决办法:
- ①检查本体编码器线的屏蔽线是否断了;
- ②检查驱动器上的CN2 插头内的屏蔽线是否接触不好;
- ③避开现场的强干扰源;
- ④检查进线电源的地线是否按要求连接。
- 3) 原因
- 编码器线受损。

- 解决办法:
- ①检查航插里的编码器线是否有退针;
- ②更换新的编码器线。
- 4) 原因
- 驱动器损坏。
- 解决办法:
- 更换新的驱动器。

4.3 控制器报警信息

• 系统开机过程中, 机器人控制器显示信息会随着开机状态而发生变化, 在对机器人应用维护中, 应能根据面板显示的信息, 诊断机器人是否处 于正常工作状态中。常见的控制器报警及状态显示见表4-5。

图4-2 系统信息列表

类别		时间				描述	
O ⁹	11-5-13 上午3:39		5*	Artarm activated			
O ⁹	11-5-13 上午2:44		5*	System ready			
6 ⁹	11-5-13 上午2:44		5*	Robot Artarm (ROBOT) has been created			
		所有信息					
		致命错误					
i		错误					
		不关键错误					
		致命应用错误					
-		其余信息					
群		所有信息		V			
确	iλ	全部确认	帮	助	ID显示		

表4-1 系统的信息类型图标和说明

信息图标	类型	说明	信息图标	类型	说明
01	1	灾难性故障	0,	3	轻微功能错误
©°	2	严重功能错误	A 4	4	警告信息
信息图标	类型	说明	信息图标	类型	说明
O ⁵	5	基本信息	o' ₃₁ o'' o' ₃₁ o''	7~16	轻微的操作错误、警 告和信息
o°	6	严重操作错误	□17 □32	17~32	提示说明

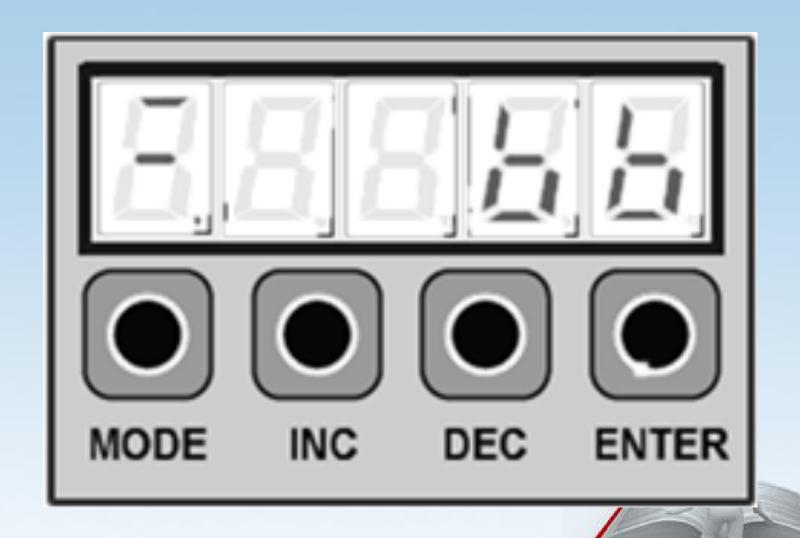


表4-2 系统信息状态说明

状态图标	说明	状态图标	说明
	当前信息仅为提示或说明		当前信息既可在操作权限管理 员权限下删除,也可在管理员权 限下删除
	当前信息只能在管理员 <mark>权限下</mark> 删除	4=	当前信息已在操作权限下删除
	当前信息只能在操作权限下删除	34	当前信息已在管理员权限下删除
	当前信息必须在操作权限和管理员权限下都删除	8	

图4-3 伺服驱动器面板及按键

表4-3 伺服驱动器面板按键功能

面板显示符号	对应名称	称 功能描述	
A	INC 键	按这两个键可显示各参数的设定和设定值 按 INC 可增加设定值 按 DEC 可减小设定值	
▼	DEC 键		
M	MODE 键	按此键可选择状态显示模式、参数设定模式、监视模式、辅助 功能模式。在设定参数时,按此键保存设定并退出	
•	ENTER 键	按此键可显示各参数的设定及设定值,以及进入参数设定状态 和清除报警	

图4-4 伺服驱动器报警显示

表4-4 伺服驱动器报警代号及说明

报警号	报警内容	报警说明	备注	
A03	超速	电动机失控		
A04	过载报警	超过额定扭矩连续运转		
A05	位置偏差计数器溢出	内部计数器溢出		
A06	位置偏差脉冲溢出	位置偏差脉冲超出了参数 Pn504 的值		
A10	增量编码器断线	增量编码器线 PA、PB、PC 至少有 1 根断线		
A13	过压	电动机运转的主电路电压过高		
A14	欠压	电动机运转的主电路电压过低		
A16	再生异常	再生处理回路异常		
A19	电动机过热报警	电动机温度过高		
A20	电源线缺相	主电路电源有一相没接		
A21	瞬间停电报警	在交流电中, 有超过一个电源周期的停电发生		
A22	电动机温度检测传感器断线报警	编码器电缆有问题		
A42	电动机型号错误	伺服驱动器参数与电动机不匹配		
A43	伺服驱动器/编码器型号错误	伺服驱动器参数与电动机不匹配		
A45	绝对值编码器多圈信息出错	多圈信息出错		
A46	绝对值编码器多圈溢出	多圈信息溢出		
A47	电池电压低于 2.5 V	多圈信息已丢		
A48	电池电压低于 3.1 V	电池电压偏低		
A50	串行编码器通信超时	编码器没连接、编码器信号受干扰,编码器损 坏或编码器解码电路损坏		
A51	绝对值编码器检测到超速报警	多屬信息可能出错 造成的原因: ①未接电池或电池电压不足 ②在电池电压正常的情况下驱动器未接电,电 动机因外部原因转动加速度过大		
A55	串行编码器通信数据校验错误	编码器信号受干扰或编码器解码电路损坏		
A61	与通信模块握手不成功	通信模块 CPU 工作不正常		
A64	通信模块与总线无连接	总线通信不正常		
A66	CAN 通信异常	由于通信连接异常或者干扰等引起 CAN 通信 出错		
A00	无错误显示	显示正常的动作状态		

表4-5 控制器报警及状态显示

状态	显示	描述
初始化		初始化状态是启动时的一种服务模式,当一个严重的系统错误出现时,才能够停止初始化(如硬件错误等)。在这个服务模式时,执行的是固定的动作,在正常的情形下,这个状态在启动的时候显示。在运行时间内,系统不会在初始化状态下
状态	显示	描述
停止	Н	控制器参数有问题, 需要重新下载控制器程序
运行		应用程序在这种状态下可以执行。处理数据的交换按照配置来处理
	B .	电源有效 (电源接通), CPU 模块硬件初始化错误。如果在这种状态,在超过一段时间内这种硬件错误一直存在,将模块发送到厂家维修
	∃.	硬件初始化,检查引导模块的特性
	2.	电源自检测,检查 CPU 模块错误特性。扩招的引导系统正在被加载和启动
	∃.	固件已经从 CF 卡载入 DRAM
	Н.	固件正在启动
	5.	启动引导模块完成,操作系统被初始化和启动