

第2讲 定积分

【考纲分析】

2022专升本考纲-数学1

- 1. 理解定积分的概念及几何意义,了解可积的条件。
- 2. 掌握定积分的性质。
- 3. 理解积分上限的函数, 会求它的导数, 掌握牛顿-莱布尼茨公式。
- 4. 熟练掌握定积分的换元积分法与分部积分法。
- 5. 会用定积分表达和计算平面图形的面积、旋转体的体积。

2022专升本考纲-数学11

- 1. 理解定积分的概念及几何意义, 了解可积的条件。
- 2. 掌握定积分的性质。
- 3. 理解积分上限的函数, 会求它的导数, 掌握牛顿-莱布尼茨公式。
- 4. 熟练掌握定积分的换元积分法与分部积分法。
- 5. 会用定积分表达和计算平面图形的面积。
- 6. 会利用定积分求解经济分析中的简单应用问题。

一、基本知识点总结

(一) 定积分的概念:	
^	

注意事项:____

(二) 定积分的几何意义

	序号	函数	曲线图像	面积	思考:如何用一个
	1 11 12 -4				式子表示?
1. 当 积分变 量为x 时	曲边梯形	$1. f(x) \ge 0$	$y = f(x)$ A $O \mid a \mid b \mid x$	A=	
11/		$2. f(x) \le 0$	$ \begin{array}{c cccc} y \uparrow a & b & x \\ \hline 0 & A & & \\ y = f(x) & & & \\ \end{array} $	A=	
		3. 有时 $f(x) \ge 0$, 有时 $f(x) \le 0$, $x \in [a, b]$	y y = f(x) $0 a x$	A=	
	两曲线	$f(x) \ge g(x), x \in [a, b]$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A=	
			$ \begin{array}{c c} y \\ \hline 0 \\ \hline a \\ g(x) \end{array} $	A=	
		有时f(x) ≥ g(x), 有时f(x) ≤ g(x), x ∈ [a, b]	$ \begin{array}{c cccc} y & f(x) & g(x) \\ \hline 0 & a & c & b & x \end{array} $	A=	
1. 当 积分变 量为y 时	曲边梯形: (由连续曲线 x=φ(y)与直线 y=c, y=d所围成)	$\varphi(y) \ge 0$	$ \begin{array}{c c} y \\ d \\ A \\ \hline x = \varphi(y) \\ \hline x \end{array} $	A=	
	两曲线围成: (由连续曲线 x=φ(y),x=ψ(y), 与直线y=c, y=d	$\varphi(y) \ge \psi(y),$ $x \in [a, b]$	$ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & &$	A=	

所围成)	
// 回双/	

(三) 定积分的性质

(二) 足积分的性质	
1.	2.
3.	4.
5.	6.
7.	8.

(四)变上限积分(变上限函数)

若 $f(x) \in C[a,b]$, 则 $F(x) = \int_a^x f(t)dt$, $x \in [a,b]$ ---变上限积分

 $\left(\int_{a}^{u(x)} f(t)dt\right)' = f[u(x)]u'(x)$

$$\left(\int_{v(x)}^{b} f(t)dt\right)' = -f[v(x)]v'(x)$$

$$(\int_{v(x)}^{u(x)} f(t)dt)' = f[u(x)]u'(x) - f[v(x)]v'(x)$$

(五)牛顿--莱布尼茨公式:____

(六) 定积分的换元积分法和分部积分法

(七) 对称公式:

$$\int_{-a}^{a} f(x)dx = \begin{cases} 0, & f(x)$$
是奇函数
$$2\int_{0}^{a} f(x)dx, & f(x)$$
是偶函数

(八) 广义积分

$$f(x) \in C[a, +\infty) \qquad \int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$

$$f(x) \in C(-\infty, b]$$

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

$$f(x) \in C(-\infty, +\infty) \quad \int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$
$$= \lim_{\alpha \to +\infty} \int_{a}^{c} f(x)dx + \lim_{b \to +\infty} \int_{c}^{+\infty} f(x)dx$$

(九) 定积分的几何应用

题型	类型	笔记
1. 求平面	X型区域 Y型区域	
图形的面	y $y = f_1(x)$	
积	A' $y = f_1(x)$ B' C $y = g_1(y)$ $x = g_1(y)$	
	$o \mid a \mid b \mid x \mid o \mid x$	
	$A = \int_{a}^{b} [f_{1}(x) - f_{2}(x)] dx \ A = \int_{c}^{d} [g_{1}(y) - g_{2}(y)] dy$	
2. 求旋	9	
转体的体 积	$V_{x} = \int_{a}^{b} \pi y^{2} dx = \int_{a}^{b} \pi f^{2}(x) dx$ $V_{y} = \int_{c}^{d} \pi x^{2} dy = \int_{c}^{d} \pi \phi^{2}(y) dy$	
	$v_y = \int_c \pi x dy = \int_c \pi \psi (y) dy$	

(十) 定积分的经济应用

二、常考的题型解析

(一) 变上限积分

	变上限积分	
例题		笔记
例1	$(1)\lim_{x\to 0}\frac{\int_0^x \ln(1+2t^2)dt}{x^3}$	
	$(1)\lim_{t\to 0}\frac{\int_0^t \ln(1+2t^t)dt}{t}$	
	$x \to 0$ x^3	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	c 0	
	$(2) \lim_{x \to 0} \frac{\int_{2x}^{0} \sin t^{2} dt}{x^{3}}$	
	$(2) \lim_{x \to 3} \frac{\sqrt{2x}}{3}$	
	$x \rightarrow 0$ x^{3}	
	Cx	
	arctan tdt	
	$(3) \lim_{x \to 0} \frac{\int_0^x \arctan t dt}{1 - \cos x}$	
	$x \to 0$ $1 - \cos x$	
mi a	$\frac{1}{\sqrt{x}}$ $\frac{1}{\sqrt{x}}$ $\frac{1}{\sqrt{x}}$ $\frac{1}{\sqrt{x}}$ $\frac{1}{\sqrt{x}}$ $\frac{1}{\sqrt{x}}$ $\frac{1}{\sqrt{x}}$ $\frac{1}{\sqrt{x}}$	
191 2.	已知 $f(x) = \int_0^{\sqrt{x}} \sin t^2 dt$, 求 $f'(x)$.	
mi-	\mathbf{r} \mathbf{f}^{x} \mathbf{c} \mathbf{c} \mathbf{r} \mathbf{c}	
例3.	及 $\int_0^x f(t)dt = x^2 - \ln x - 1$, 则 $f(x) = ($).	
F		
<i>ÎB</i> i 4 ⋅	设 $\varphi(x) = \int_0^{x^2} e^{-t} dt$,则 $\varphi'(x) = ($)	
791 4.	$\mathbf{v}(x) = \int_0^\infty e^{-\alpha t} \mathbf{v}(x) = (1)$	
		+

例 5. 已知 $x \ge 0$ 时 $f(x)$ 连续,且 $\int_0^{x^2} f(t) dt = x^2 (1+x)$,	
求 $f(2)$.	
CX 2	
例 6.求函数 $F(x) = \int_0^x te^{-t^2} dt$ 的极值。	

(二) 3	(二) 求定积分						
方法	例	解答过程 $1.\int_{4}^{9} \sqrt{x} (1+\sqrt{x}) dx$	笔记				
1. 利	例题	$1.\int_{0}^{9} \sqrt{x}(1+\sqrt{x})dx$					
用牛	~	21 J ₄ v (2 · v v)					
顿莱	7.						
布尼							
茨公							
式							
		$2.\int_{0}^{\frac{\pi}{2}}\sqrt{1+\cos 2x}\ dx$					
		$3. \int_0^{\frac{\pi}{3}} \frac{1 + \sin^2 x}{\cos^2 x} dx$					
		$\int_0^{\infty} \cos^2 x$					
	例	例 8. 定积分 $\int_{-2}^{2} x \cos x dx = ($) $A1 B.0 C.1 D.\frac{1}{2}$					
	题8						
		$A1$ $B.0$ $C.1$ $D\frac{1}{2}$					
0.43							
2. 利							
用对称公							
孙公							

	1	π • Δ π	
式		例 9.设 $M = \int_{-\pi}^{\pi} \frac{\sin x \cos^{4} x}{x^{2}} dx$, $N = \int_{-\pi}^{\pi} (\sin^{3} x + \cos^{4} x) dx$,	
		$\frac{\sqrt{\pi}}{2}$ $1+x^2$ $\frac{\sqrt{\pi}}{2}$	
		例 9.设 $M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x \cos^4 x}{1+x^2} dx$, $N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) dx$, $P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) dx$, 则,	
		(A) .N <p<n, (b).n<m<p,="" (c).m<p<n,="" (d)="" .p<m<n.<="" th=""><th></th></p<n,>	
	例	$1. \int_{-2}^{2} \frac{x^5 + 2x^4 + x^3 - 3x^2 - 1}{x^3 + x} dx$	
	10	$1 \cdot \int_{-2} \frac{ux}{x^3 + x}$	
		$\int_{-2}^{2} \int_{-2}^{2} \int_{-2}^{2$	
		$2. \int_{-2}^{2} \left(\sqrt{4 - x^2} - x \cos^2 x \right) dx$	
3.	例	$1.\int_{0}^{2\pi} \left \sin x \right dx$	
利用	11	$\int_0^{\infty} \sin x dx$	
积分			
区间			
的可			
m2 1			
加性			
		2 \int_{\text{ln v} \ dv}	
		$-2.\int_{\frac{1}{e}}^{e} \ln x dx$	
		$2.\int_{\frac{1}{e}}^{e} \ln x dx$	
		$2.\int_{\frac{1}{e}}^{e} \ln x dx$	
		$2.\int_{\frac{1}{e}}^{e} \ln x dx$	
		$2.\int_{\frac{1}{e}}^{e} \ln x dx$	
		$2.\int_{\frac{1}{e}}^{e} \ln x dx$	
	例		
	例 12		
	例 12		
		例12. 设 $f(x) = \begin{cases} x+1, & 0 \le x \le 1 \\ \frac{1}{2}x^2, & 1 < x \le 2 \end{cases}$, 则 $\int_0^2 f(x) dx = ()$	
		例12. 设 $f(x) = \begin{cases} x+1, & 0 \le x \le 1 \\ \frac{1}{2}x^2, & 1 < x \le 2 \end{cases}$, 则 $\int_0^2 f(x) dx = ()$	
		例12. 设 $f(x) = \begin{cases} x+1, & 0 \le x \le 1 \\ \frac{1}{2}x^2, & 1 < x \le 2 \end{cases}$, 则 $\int_0^2 f(x) dx = ()$	
		例12. 设 $f(x) = \begin{cases} x+1, & 0 \le x \le 1 \\ \frac{1}{2}x^2, & 1 < x \le 2 \end{cases}$, 则 $\int_0^2 f(x) dx = ()$	
		例12. 设 $f(x) = \begin{cases} x+1, & 0 \le x \le 1 \\ \frac{1}{2}x^2, & 1 < x \le 2 \end{cases}$, 则 $\int_0^2 f(x) dx = ()$	
		例12. 设 $f(x) = \begin{cases} x+1, & 0 \le x \le 1 \\ \frac{1}{2}x^2, & 1 < x \le 2 \end{cases}$, 则 $\int_0^2 f(x) dx = ()$	

		,	问可数丁(1)
4. 利	例	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx$	
田 凸	例 13	$1.\int_{-1}^{1} \frac{dx}{\sqrt{5-4x}}$	
用定	13	$\sqrt{5-4x}$	
积分			
的换			
元法			
70,7			
		ae^2 dx	
		$2.\int_{1}^{e^2} \frac{dx}{x\sqrt{1+\ln x}}$	
		$\int_{0}^{\infty} x\sqrt{1+\ln x}$	
		$c_1 dx$	
		$3.\int_0^1 \frac{dx}{e^x + e^{-x}}$	
		$\int \int \int e^{x} dx + e^{-x}$	
		$4.\int_0^1 \sqrt{1-x^2} dx$	
		$4. \int_{0}^{\infty} \sqrt{1-x^2} dx$	
		3 0	
		$5. \int_{1}^{\sqrt{3}} \frac{1}{x^2 \sqrt{x^2 + 1}} dx$	
		$\int \int_{1}^{\infty} \frac{1}{x^2 \sqrt{x^2 + 1}} dx$	
		$x \forall x + 1$	
		$c^{\frac{\sqrt{2}}{2}}$ arcsin x	
		$6. \int_0^{\frac{\sqrt{2}}{2}} \frac{\arcsin x}{\sqrt{(1-x^2)^3}} dx$	
		$\int_{0}^{0} \sqrt{(1-x^2)^3}$	
		1 '	
		$ \frac{\pi}{2}$	
		$7. \left \frac{2}{\pi} \sqrt{\cos x - \cos^3 x} dx \right $	
		$7.\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x - \cos^3 x} dx$	

_	1	7.2.00	13 (1)
5. 利	例	$1.\int_{0}^{\frac{\pi}{4}} x \sin 2x dx$	
用定	14	$\begin{bmatrix} 1 \cdot \mathbf{J}_0 & \lambda \sin 2\lambda u \lambda \end{bmatrix}$	
积分			
的分			
部积			
分法			
		c4 ln x	
		$2.\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx$	
		\sqrt{x}	
		$3.\int_0^{\frac{\pi^2}{4}} \sin\sqrt{x} dx$	
		$\int_0^{\pi} \sin \sqrt{x} dx$	
6.		例 15. 设 $f(x)$ 为连续函数,且 $f(x) = x + 2 \int_0^1 f(t) dt$,求 $f(x)$ 。	
利用			
定积			
分是			
一个			
常数			
的本			
质			
(三)求)	广义积	分	
求广	例	$\int_{-\infty}^{0} xe^{-x^2} dx$	
义积	例 16	1. J _∞ re ar	
分			
		$2.\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$	
		$J^{-\infty}$ $1+x^2$	

	六王内心	内寸妖力 (1)
$3.\int_{\frac{\pi}{2}}^{+\infty} \frac{1}{x^2} \sin \frac{1}{x} dx$		
2 30		

(四)积分证明题

例17.设函数 $f(x)$ 连续,证明 $\int_a^b f(a+b-x)dx = \int_a^b f(x)dx$	
J a J a	
例18.设 $f(x)$ 在[a,b]上连续且 $f(x)>0$,证明方程	
$\int_{a}^{x} f(t)dt + \int_{b}^{x} \frac{1}{f(t)}dt = 0$,在 (a,b) 内有且仅有一个实根.	
例19. 已知 $f(x)$ 为奇函数,求证 $\int_0^x f(t)dt$ 为偶函数。	
J 0° · · ·	
例20. 已知 $f(x)$ 在($-t$, t)上为偶函数,求证 $f'(x)$ 在($-t$, t)上为奇函数。	
$c^{x} + \sin t$ $c^{1} + t$	
例 21. 证明 $\int_0^x \frac{2+\sin t}{1+t} dt = \int_x^1 \frac{1+t}{2+\sin t} dt$ 在 $(0,1)$ 内有唯一的实根.	

(三)求平面图形的面积

	例题	图像	笔记
1.	例22求曲线围成的面积		
求	$(1)y = \frac{1}{x}, y = x, x = 2;$		
曲	(1) $y = -, y = x, x = 2;$		
线	<i>N</i> .		
围			
成			
的			
面			
积	1		
•	$(2)y = \frac{1}{x}, y = x, x = 2, x $ ##i;		
	^		
	(2) a^{x} a^{-x} 1.		
	(3) $y = e^x, y = e^{-x}, x = 1;$		
	例23.由曲线 $y = e^x$, $y = e D y$ 轴围成的图形		
	的面积是		
	例24.曲线 $y = x^2$ 与直线 $y = 1$ 所围成的图形的面积为()		
	M_24 . 曲线 $y = x$ 与直线 $y = 1$ 例 国		
	例 26. 已知曲线 $y = \ln x$ 与直线 $y = ax + b$ 相切于点 $(c, \ln c)$,		
	其中 $2 < c < 4.y = \ln x$ 与直线 $y = ax + b$, $x = 2$, $x = 4$ 围成		
	一个封闭图形.		
	(1) 求 C 为何值时,该封闭图形的面积最小?		
	(2) 根据 (1) 所求,求 <i>a</i> , <i>b</i> 的值。		
	例25.计算抛物线 $y^2 = 2x$ 与直线 $y = x - 4$ 所围成图形的面积。		

典型例题 高等数学(下)

2.	例 27.设抛物线 $y = ax^2 + bx + c$ 过原点,当 $0 \le x \le 1$ 时,	
旋	$y \ge 0$,又已知该抛物线与 x 轴及直线 $x = 1$ 所围成图形的	
转体	面积为 $\frac{1}{2}$,试确定 a,b,c 的值,使此图形绕 x 轴旋转一周	
4 的	所成的旋转体的体积最小。	
体		
积		