


《汽车发动机电控系统检修》课程授课教案

课题	任务 6.3 氧传感器检修					
授课班级		学时	4	上课地点	恵 整车实	兴 训室
	能力目标	知识目标			素质目标	
教学目标	1、能够正确使用万 用表、诊断仪对氧传 感器进行检测; 2、能够根据检测结 果判定故障点并进 行维修。	构及工 2、理解 动机性 3、掌护	屋氧传感器的结作原理; 解氧传感器对发 能的影响; 屋故障诊断一般 排除方法。	1、培养学生的创新精神与实践能力; 2、促进学生个性发展,培养学生分析问题与解决问题的能力; 3、培养学生的团队合作精神; 4、培养学生的学习能力。		
教学重点 与难点	重点: 氧传感器的结构、原理 难点: 判定故障点并检修					
参考资料	《汽车发动机电控系统检修》					
教学条件	多媒体、实车、发动机					
教学过程 与时间分 配 min	主要教学内容				教学资源	教学方法
课前学习	1、线下、线上学习: (1)氧传感器作用、类型; (2)氧传感器结构原理。 2、领取学习任务单,明确本次课学习目标、重难点; 学习相关内容。 3、线下、线上提问及解答;				教学平台 资源; qq 群	自学法
情境创设 20 min	1、情境创设,引入故障案例: 一辆现代福瑞迪轿车出现下面故障现象:排放不达标。经初步诊断,系发动机氧传感器出现故障导致的。 2、引出本次学习任务:氧传感器检修 3、分析学习任务,确定学习目标、学习重点难点: (1)掌握氧传感器的功能及原理;			视频、多 媒 体 教 学、教学 平台资源	任务驱动 法、讲授 法、实物 演计 说、展示	

	(2) 能识别并检测氧传感器。		
	重点: 氧传感器的结构原理		
	难点: 氧传感器的故障检修		
	回顾课前学习任务:		
	(1) 氧传感器作用、类型;		
	(2) 氧传感器结构原理。		
	5、学生小组展示课前学习成果 PPT。		
	一、作用		
	在发动机工作过程中,向 ECU 输送一个标志着排气	微课视频	自学
	中含氧量的电压信号,根据此信号,ECU随时修正汽油		
	的喷射量,确保可燃混合气的空燃比始终稳定在理论空		
	燃比附近。安装在排气管内。		
	二、类型		
	二氧化锆式、二氧化钛式。		
	三、氧传感器的结构与工作原理		
	主要由壳体、陶瓷电解质和弹簧等组成	微课视	自学
讲 授 45 min	保护売 陶瓷电解质 弹簧 通气孔	频、PPT、	
	外壳 接触衬套 保护盖		
	71 Ju BABATI W	微课视	
	氧化锆式氧传感器工作原理	频、PPT、	
	陶瓷电解质内外两侧均镀有一层多孔性铂电极。传	微课视频、实物	
	感器外侧与排放废气接触,而内部则通入大气。陶瓷电		
	解质二氧化锆允许氧的渗入,高温下氧气发生电离,锆	讲解	
	管两侧氧含量不一致,即存在着浓度差时,电解质内部		
	的氧离子由高向低扩散,结果使锆管元件成了一个微电		
	池,能够向外输出电压。		
	二氧化锆氧传感器的输出特性如图示。当混合气稀	微课视	
	时,排气中所含氧多,两侧氧浓度差小,产生的电压低;	频、动画	

	而当混合气浓时排气中氧含量少,两侧氧浓度差大,产	演示、	
	生的电压高。ECU 通过氧传感器输入信号电压的高低即	PPT、实物	
	可确定混合气的空燃比是否为最佳值,并发出指令对喷	讲解	
	油器的喷油脉冲宽度进行修正。		
	五、扫描二维码登录 UMU 互动平台,完成"氧传感器基	提出互动	参与互动
	本组成"问卷调查		
	(1) 氧传感器的安装位置		
仿真操作 45min	(2) 氧传感器的结构	仿真软件	演示法
4311111	(3) 氧传感器的检测		
	1 SITO THE IT IS NO	微视频、	
实操演练 60 min	1、领取工作任务单;	PPT、学习	分组演练
OO IIIII	2、分组让学生在实车上进行氧传感器检测	手册	
	根据学生上传至教学平台对学生实训过程进行相		<u>'</u>
	互评价。	师生共同进行评价	
评价总结 10 min	1、总结学生实操过程中出现的问题		
	2、总结本堂课学习的重点和难点		
	3、总结本堂课的收获		
	参与在线教学平台讨论话题:	为下次课准备	
课后提升	6.3 废气再循环控制系统基本组成?		
课后反思			