



《汽车发动机电控系统检修》课程授课教案

课题	任务 4.3 爆震传感器的检测						
授课班级		学时	4	上课地点	汽车发动机实训室		
教学目标	能力目标	知识目标			素质目标		
	1、能就车识别爆震 传感器; 2、会检测爆震传感 器。	的创新精神与实践能力; 性发展,培养学生分析问的能力; 的团队合作精神; 的学习能力。					
教学重点 与难点	重点: 爆震传感器的功能及检测; 难点: 爆震传感器的类型及工作原理。						
参考资料	《发动机电控-爆震传感器的检修》						
教学条件	多媒体、实训车、发动机						
教学过程 与时间分 配 min		主要	教 学 内 容	٤	教学资源	教学方法	
课前学习	1、线下、线上学 (1)爆震传感器 (2)爆震传感器 2、领取学习任务 相关内容。 3、线下、线上提	作用、类结构原理单,明确	¹ 。 角本次课学习目 [‡]	示、重难点,自:	教学平台资源; qq群	自学法	
情境创设 20 min	1、情境创设,引入故障案例: 一辆现代索纳塔轿车,车主反映在行驶中发动机状态恶化,检查灯突然闪亮。经初步诊断,系发动机爆震传感器出现故障导致的。 2、引出本次学习任务:爆震传感器的检修。 3、分析学习任务,确定学习目标、学习重点难点: (1)掌握爆震传感器作用、结构原理; (2)能够根据检测结果判定故障点并进行检修。 重点:爆震传感器结构原理 难点:判定故障点并检修				视频、多媒体教学、教学平台资源		

	4、回顾课前学习任务:		
	(1) 爆震传感器作用、类型;		
	(2) 爆震传感器结构原理。		
	5、学生小组展示课前学习成果 PPT。		
	一、爆震传感器的功能	微视频、PPT	小 组 讨
	爆震传感器安装在发动机气缸壁上,用于检测发动机有		论、展示
	无爆震及爆震的强度,向 ECU 报告信号,从而对点火提前角		
	进行控制。发动机工作时因点火时间提前过度(点火提前角)、		
	发动机的负荷、温度及燃料的质量等影响,会引起发动机爆		
	震。发生爆震时,由于气体燃烧在活塞运动到上止点之前,		
	轻者产生噪音及降低发动机的功率,重者会损坏发动机的机		
	械部件。为了防止爆震的产生,爆震传感器是不可缺少的重		
	要部件,以便通过电子控制系统去调整点火提前时间。		
	二、爆震对发动机的危害		
	主要的害处是:发动机动力下降、油耗增加、噪音加大、	微视频、PPT	
	汽车舒适性变差、排放恶化(车内车外都能闻到严重的怪味、		
.H +w	有时一辆车的污染可以相当于 200 多辆车正常状态时所产生		
讲 授 80 min	的污染、严重影响驾驶员本人和乘客的身体健康),最为严重		
	的时候会引起敲缸、发动机熄火以及发动机机械部件破坏。		
	三、爆震传感器的类型及工作原理		
	爆震传感器有多种类型。常见的有压电式和瓷质伸缩式	微视频、	小 组 讨
	两大类。其中压电式共振型传感器应用最多,它一般安装在	PPT、动画	论、展示
	发动机机体上部,利用压电效应把爆震时产生的机械振动转		
	变为信号电压。当产生爆震时的振动频率(约 6000Hz 左右)		
	与压电效应传感器自身的固有频率一致时,即产生共振现象。		
	这时传感器会输出一个很高的爆震信号电压送至 ECU, ECU 及		
	时修正点火时间,避免爆震的产生。		
	当加速或者大负荷状态发动机产生轻微爆震时, 传感器		
	向 ECU 输入爆震信号。ECU 接收到爆震传感器送来的爆震信号		
	后,指示减小点火提前角,一直到爆震停止。但是,若爆震		
	传感器自身或者配线产生故障,上述爆震控制过程就不能正		

	常进行。此时为了保护发动机,提高发动机的运转性能,计				
	算机把点火提前角固定在某个不能产生爆震的数值上,这就				
	是所谓的"安全失效"。不过 ECU 要把发动机控制系统产生的				
	故障码显示给驾驶员,因此,就点亮了发动机故障指示灯。				
	四、爆震传感器的故障检测				
	1、对爆震传感器及其线路进行外观检查。				
	2、用诊断仪读取发动机故障码和数据流。				
	3、检测爆震传感器。				
	(1) 检测电阻				
	用万用表检测传感器两端子间电阻正常值在无穷大。				
	(2) 检测信号波形	All All der	VII. 1555 V-14		
	用示波器观察爆震传感器的输出波形,与正常波形对照	微视频、	讲授、演		
	分析,确定爆震传感器是否良好。	PPT、实物	示法		
	4、检测线束				
	检测传感器与 ECU 之间的连接线束,阻值不超过 1.5Ω。				
	5、排除故障。				
N	(1) 爆震传感器的安装位置;				
仿真操作 45min	(2) 爆震传感器的结构;	仿真软件	演示法		
	(3) 爆震置传感器的检测。				
		微视频、			
实操演练 60 min	1、领取工作任务单;	PPT、学习手	分组演练		
评价总结 10 min	2、分组让学生在实车上进行氧传感器检测	册			
	根据学生上传至平台对学生实训过程进行相互评价。				
	1、总结学生实操过程中出现的问题;	师生共同进行评价			
	2、总结本堂课学习的重点和难点;				
	3、总结本堂课的收获。				
课后提升	参与在线教学平台讨论话题: 4.3 爆震传感器出现故障发	为下次课准备			
体归矩开	动机电控工作状况如何?				
课后反思					