实训项目六 供料-输送 PPI 主从通讯网安装及调试

任务1 供料-输送 PPI 主从通讯网配置及调试

一、 实训地点与参考学时

格物楼 B217 自动生产线安装与调试实训室,参考学时(6h)

- 二、 实训目的
 - 1. 掌握 S7-200PLC 组网的方法与步骤
 - 2. 能用 PPI 专用通信电缆正确连接欲组网的 PLC,并正确设置拨动开关的
 - 3. 掌握使用网络读写命令向导设计通讯控制程序的方法。
 - 4. 能熟练设置 S7-200PPI 通信参数,查找到网络中的全部 PLC
- 三、 实训内容
- 1. 使用 PPI 通信线连接网络中的 PLC,设置 S7-200PPI 通信参数,构建网络 要求:把 YL-335B 实训设备中 5 台 PLC 配置连接到一个网络中。

PLC 名称	站地址	波特率
输送站	1	1900Kbit/s
供料站	2	
加工站	3	
装配站	4	
分拣站	5	

表 6-1 YL-335B5个工作站通信参数

2. 设计 PLC 程序实现供料站 PLC 与输送站 PLC 间数据传输与控制

要求: 网络中有 2 台 PLC, A 的地址为 1, B 的地址为 5, 要求用 A PLC 的输入控制 B PLC 的输出。假定 A PLC 的输入为 I0.0~I0.7, 分别控制 B PLC 的输出 Q0.0~Q0.7。

四、 实施步骤

1. 了解 PPI 通信技术,完成学生工作页中"了解 PPI 通信"部分

把设备中的5台PLC构建到一个网络中,完成学生工作页中"构建网络"部分。
 1) 通信参数设置

对网络上每一台 PLC,设置其系统块中的通信端口参数,对用作 PPI 通信 的端口 (PORT0 或 PORT1),指定其地址 (站号)和波特率。

S7-200 的默认通信参数为:地址2、波特率9600Kb/s,8位数据位、1位

偶校验位、1 位停止位、1 位起始位。波特率和站地址可根据实际情况进行设置, 其它数据格式是不能更改的。各站 PLC 通信参数如表 6-1 所示,在设置通信参数时,各站的地址不同,波特率相同。具体操作如下:

使用 PC/PPI 电缆连接计算机和输送站 PLC 的 PORT0,运行个人电脑上的 STEP7 V4.0(SP5)程序,打开设置端口界面,如图 6-1 所示,选择"系统块" 的"通信端口"命令,在新窗口中设置输送站 PLC通信端口参数,设置端口 0 为 1,波特率为 19.2kbps,如图 6-2 所示。

参数设置完成后,必须下载到PLC中,下载程序,在下载时选中"系统块" 选项(系统默认选中),否则设置的参数在PLC中没有生效,如图 6-3 所示。

图6-1 打开设置端口画面

系统块	通信端口					
□ 断电数据保持						默认值
□ 脉冲捕捉位			端口 0	端	口 1	
□ お気町回 □ EM 配置		PLC地址:	1	÷ 2	÷	范围1126)
LED 配置 日 増加存储区		最高地址:	31	÷ 31	÷	(范围 1126)
		波特率:	19.2 kbps	▼ 9.6 kb	ps 💌	
		重试次数:	3	÷ 3	÷	(范围 08)
	ł	也址间隔刷新系数:	10	: 10	÷	范围1100)

图 6-2 设置输送站 PLC 端口 0 参数

22-73	
▶ 程序块	至 : PLC
☑ 数据块	至 : PLC
▼ 系统块	至 : PLC
□ 配方	
□ 数据记录配置	

图6-3 通信数据下载

同样方法,使用 PC/PPI 电缆分别连接计算机和其它 4 站 PLC,按照表 6-1 设置站地址和波特率,把系统块下载到相应的 PLC 中。完成 5 个站的通信参数 设置。

2) 硬件连接

利用网络接头和网络线把各台 PLC 中用作 PPI 通信的端口 0 连接,所使用的网络接头中,2#~5#站用的是标准网络连接器 1#站用的是带编程接口的连接器该编程口通过 RS--232/PPI 多主站电缆与个人计算机连接。

3) 查看网络中的PLC

然后利用 STEP7 V4.0 软件和 PPI/RS485 编程电缆搜索出 PPI 网络的 5 个站。如图 6-4 所示,表明 5 个站已经完成 PPI 网络连接。

Ξ.		
地址 本地: 远程: PLC类型: ☑ 随项目保存设置	0 5 • CPU 222 CN REL 02.01	地理 PC Adapte(PPI) 地址:0 CPU 226 CN REL 02.01 地址:1 CPU 224 CN REL 02.01 地址:2 CPU 224 CN REL 02.01 地址:3 CPU 224 CN REL 02.01 地址:3
网络参数 接口: 协议:	PC Adapter PPI	CPU 226 CN REL 02.01 地址:4 CPU 224 XP REL 02.01 地址:5
模式: 最高站地址(HSA): ☑ 支持多主站	11位 31	「「「」」「「」」「「」」「」」「」」「」」「」」「」」「」」」「」」」「」
传输速率 波特率 □ 提案所有波特率	187.5 kbps	
设置 PG/PC 接口		确认取消

图6-4 PPI网络上的5个站

3. 网络配置

选定主站 PLC 和从站 PLC,确定通讯信息,分配通讯数据地址。完成学生工作页中"网络配置"部分。在主站 PLC 程序中使用网络向导完成网络配置。

▶ 要启动网络读写向导程序

在 STEP7 V4.0 软件命令菜单中选择 工具→指令导向,并且在指令向导窗口中选择 NETR/NETW (网络读写),单击"下一步"后,就会出现 NETR/NETW 指令向导界面, 如图 6-6 所示。

图 6-6 NETR/NETW 指令向导界面

本界面和紧接着的下一个界面,将要求用户提供希望配置的网络读写操作总数、指定进行读写操作的通信端口、指定配置完成后生成的子程序名字,完成这些设置后,将进入对具体每一条网络读或写指令的参数进行配置的界面。

在本例子中,1项网络读写操作:主站(1号)向各从站(5号)发送数据。读 写操作的通信端口为0(主站网络通讯线连接的PLC端口PORT0或 PORT1,任务 1中连接PORT0),生成的子程序名称默认NET-EXE。

▶ 网络读写操作配置

NETR/NETW 指令向导		× 1
	网络读/写操作第 1 項/共 8 項 此項操作是 NETR 还是 NETW? NETY ▼ 应将多少个字节的数据写入远程 PLC? 1 ÷	?
	本地 PLC	远程 PLC 地址: 5 🛨
	要据位于本地 PLC 的何处?	▶ 数据写入远程 PLC 的何处?
Time Disk Mag. Net	IBO 至 IBO	QB0 至 QB0
Entit Attain Day Chain 6489 Day Chain 6489 Day Chain 6489 Generalize Generalize		〈上一項操作 下一項操作 〉
		〈上一步 下一步〉 取消

图6-7 网络读写操作

图6-7 为网络读写操作配置界面,在本例中仅有1项写操作(主站向从站发送数

据)选择 NETW 操作,写入1个字节,远程PLC地址为5,位于主站 PLC 的 IB0~IB0 处,从站PLC 的 QB0~ QB0处接收数据。

若有多项操作,配置完成一项操作后,点击"下一项操作"按钮,进入下 一项读写操作配置,直至完成全部操作配置。全部读写操作配置完成后,单击 "下一步"。

▶ 要求指定一个 V 存储区的起始地址, 以便将此配置放入 V 存储区。这时若在选择框中填入一个 VB 值 (例如, VB100), 或单 击"建议地址", 程序自动建议一个大小合适且未使用的 V 存储区地址范围。如图6-8所示。

NETR/NETW 指令向导	
	为配置分配存储区 忽已经配置了 8 项操作,共需要 75 个字节的 V 存储区。诸指定一个起始地址,可 在此将配置放入 V 存储区;或允许向导建议一个地址。 句导可建议一个大小合适且未使用的 V 存储区地址范围。 建议地址(<u>S</u>) VBO 至VB74
	<上→步 [下→步] 取消

图 6-8 为配置分配存储区

单击"下一步",全部配置完成,向导将为所选的配置生成项目组件,如图 8-9 所示。修改或确认图中各栏目后,点击"完成",借助网络读写向导 程序配置网络读写操作的工作结束。这时,指令向导界面将消失,程序编 辑器窗口将增加 NET_EXE 子程序标记。

图 6-9 生成项目组件

4. 主站程序设计

要在程序中使用上面所完成的配置,须在主程序块中加入对子程序 "NET_EXE" 的调用。使用 SM0.0 在每个扫描周期内调用此子程序,这将 开始执行配置的网络读/ 写操作。梯形图如图 6-10 所示。

图 6-10 子程序 NET_EXE 的调用

网络1调用网络读写子程序,即能实现主站 IB0 送给从站5号 QB0,因此 不需要其它程序段。下载该程序到1号 PLC,注意下载程序时,系统块不要下载。

_ 洗顶	
122-5%	
▶ 程序块	至 : PLC
☑ 数据块	至 : PLC
□ 系统块	

图6-11 通信数据下载

5. 从站程序设计

只要保证通信正常,主站就能实时把自身 IB0 的数据传送到 5 号从站 QB0 上,因此从站不需要编写程序块。若需要编写从站程序,注意下载程序时,系统 块不要下载。

6. 运行程序,观察结果

把 2 个 PLC 运行开关拨到 RUN,先使各从站运行,最后使主站运行。观察 5 号 PLC 输出 Q0.0-Q0.7 指示灯与 1 号 PLC 输入 I0.0-I0.7 指示灯是否一致。

五、 注意事项

- 1. 下载主站和从站程序时,系统块不要下载。
- 2. 选定的主站不同,通信设置不同。
- 3. 在主站中进行网络设置,一般用 SM0.0 调用网络子程序。
- 4. 通信参数设置要求个 PLC 波特率相同,地址不同。
- 5. 专用电缆连接网路中的 PLC, 首尾 DP 头的拨动开关置于 OFF, 中间 DP 头的拨动开关置于 ON。

六、 拓展训练与思考

- 1. A PLC 的输入控制 B PLC 的输出:输送站 PLC 的启停按钮控制供料站 PLC 的指示灯亮灭。(供料站和输送站分别作为主站)
- 2. 3 台 PLC 数据传输: 2 号站的输入 IB0 送到 3 号站 QB0 输出, 3 号站的输入 IB0 送到 1 号站 QB0 输出
- 3. 如何在不插拔通信电缆的条件下,修改调换某 2 个 PLC 的地址?
- 七、学生工作页

ेम मह	项目六 供料-输送两站组网安装与调试						油叶			
保趔	任务一 供料-输送 PPI 主从通讯网配置及调试					床的	on			
组员								授课时间		
分工								授课形式	一体化	
		1)	了解 PF	PI 通信协议						
	知识目标	2)	用 PPI	用 PPI 协议实现通信的步骤						
		3)	网络读写命令向导的使用							
		4)	主从 PI	.C 程序设计	分析					
教学	技能目标	1)	能使用	PPI 通信线	连接网络中	的 PLC, j	并设置 DP 乡	、开关		
- 秋子 日标		2)	能按照	协议设置 S'	7-200PPI 通	信参数,约	且建网络			
		3)	能够使	能够使用网络向导设计程序						
		4)	能够根	据控制要求	设计 PLC 程	序并调试				
		1)	工具摆	放整齐						
	素养目标	2)	电气接	线规范						
		3)	用电安	全						

	1.	PPI 通信是()的串行通信, s7_200 为此提供的硬件接口为(), 通信接口,
		该通信接口是 () 通信方式, 通信距离可以达到 () 米。
了解	2.	在使用 PPI 通信协议进行通信时,通信发起方称为(),只能有()台 PLC,网
		络中的其它 PLC 称之为()。网络中有()个主站,最多可以有()个子站。
「「」 通信	3.	RS-485 通信接口实现分布式控制系统时,为了区别每个设备,给每个设备一个编号或站号,
四日		称之为();联网时,必须保证(),否则通信会混乱。
	4.	波特率是指:())
	5.	200PLC 常用的波特率有()()。
	构建	tPPI 通信网络步骤:(在括号中正确答案上打钩)
	1.	通信参数设置,程序下载线连接 PLC,下载系统块。
	2	设置系统块,使网络中每台 PLC 的地址(不同/相同),波特率(不同/相同)。
	2.	使用专用通信电缆连接各 PLC。
网络		专用电缆, 首尾 DP 头波动开关置于 (ON/OFF), 中间 D P 头波动开关置于 (ON/OFF)。
构建	3.	通信,刷新出现所有网络中的 PLC
	注意	:在网络中的所有 PLC 使用相同的波特率,不同的地址。
	PPI	硬件连接使用专门的 PC-PPI 通信电缆,网络中首尾开关拨到 OFF,中间开关拨到为 ON。
	1.	如何在不插拔通信电缆的条件下,修改调换某 2 个 PLC 的地址?
拓展		
训练		
9117741		

	要求:网络中有2台PLC,A的地址为1,B的地址为5,要求用A PLC的输入控制					
	B PLC 的输出。假定 A PLC 的输入为 IO.0~IO.7,分别控制 B PLC 的输出					
	Q0. 0 [~] Q0. 7 °					
	1. 填表分配通信数据地址					
	选定(1)号PLC为主站,需要网络操作项数()。					
	主站()号PLC 从站()号PLC					
	接受数据长度(读/写)操作 ()个字节					
	来自从站何处					
	存往主站何处					
	发送数据长度(读/写)操作	()个字节				
	从主站何处发送					
	发往从站何处					
	使用网络读写向导,在(主站/从站	b)PLC 程序中配置网络。				
	2. 编程					
	(1)1号站程序;	(2) 5号站程序;				
网络						
配置						
		亜下裁				
	┃ 1⊥∞; ┃ 秋1±/11时, 承兆大个					

	1、A PLC 的输入控制 B PLC 的输出, A 的地址为 1, B 的地址为 5: A PLC 的启停按钮控制供料站 PLC 的指示灯亮灭。(供料站和输送站分别作 为主站训练)						
	填表分配通信数据地址						
	选定B号PLC为主站,需要的网络操作项数()。 主站(5)号PLC 从站(1)号PLC						
	接受数据长度		()个字节				
	来自从站何处						
	存往主站何处						
	发送数据长度		() 个字节				
	从主站何处发送						
	发往从站何处						
拓展	编程						
训练	1号站程序;	5号站程序;					

2、3台 PLC 数据传输: 2号站的输入 IB0 送到 3号站 QB0 输出, 3号站的 输入 IB0 送到 1 号站 QB0 输出。

选择1号作为主站,通信数据()项。选择2号作为主站,通信数据() 项。选择3号作为主站,通信数据()项。因此最好选择()号 PLC 作为主站。

填表分配通信数据地址

()号站(主站)	()号站(从站)	()号站(从站)
接受数据长度	()个字节	()个字节
来自从站何处		
存往主站何处		
发送数据长度	()个字节	()个字节
从主站何处发送		
发往从站何处		

编程

1 号站程序;

2 号站程序; 3 号站程序

注意: 主站从站间可以数据通信,从站与从站间不能直接数据通信。

	问题及解决办法:	
	常见问题	
	1、PPI 电缆正常连接,通信刷新,网络中国	某 PLC 不显示地址型号,可能原因网络中
	多台 PLC 地址冲突。	
总结	你的问题:	
任务评价	1. 工作页" 了解 PPI 通信 "正确	□正确 □基本正确 □错误 □多处错
	2. 工作页" 网络构建 "正确	□正确 □基本正确 □错误 □多处错
	 操作网络中的 PLC 连接正确且通信参数设置正确 	□正确 □基本正确 □错误 □多处错
	4. 工作页"网络配置"正确	□正确 □基本正确 □错误 □多处错
	5. 拓展训练 1 完成	□正确 □基本正确 □错误 □多处错
	6. 工作页" 拓展训练1 "正确	□正确 □基本正确 □错误 □多处错
	7. 拓展训练 2 完成	□正确 □基本正确 □错误 □多处错
	8. 工作页" 拓展训练2 "正确	□正确 □基本正确 □错误 □多处错
	9. 总结认真	□优秀 □良好 □中等 □合格 □不合格
	10. 职业素养良好	□优秀 □良好 □中等 □合格 □不合格

教师总评