第二章 认识葡萄酒

一、葡萄酒的种类

1. 按颜色分类

红葡萄酒——呈宝石红、紫红或石榴红色。

白葡萄酒——呈浅黄、禾杆黄色等。

桃红葡萄酒——呈淡玫瑰红、桃红、浅红色等。

2. 按含糖量分(以葡萄糖计)

干葡萄酒——含糖量≤4 g/L 半干葡萄酒——含糖量4.1~12 g/L 半甜葡萄酒——含糖量12.1~50 g/L 甜葡萄酒——含糖量 ≥50 g/L

3.按CO2含量分类

静止葡萄酒——酒内溶解的 CO_2 含量极少,气压 ≤ 0.05 MPa。 开瓶后不产生气泡。

气泡葡萄酒——由葡萄原酒加糖进行密闭二次发酵产生CO₂ 而成。瓶内气压≥Mpa。

4.按酿造方法分类

天然葡萄酒——完全采用葡萄原汁发酵而成, 不外加糖或酒精。

加强葡萄酒——葡萄发酵后,添加白兰地或中性酒精来提高酒精含量的葡萄酒。

加香葡萄酒——在葡萄酒中加入果汁、药草、甜味剂制成。

二、葡萄酒的营养成分和保健作用

1.营养成分

葡萄汁中的糖分及其它成分在酵母菌等微生物的作用下,发生 了一系列的化学变化最后形成了具有独特风味的葡萄酒。

①甜味物质 葡萄酒中的甜味物质可分为三类,即糖、 多羟基醇以及具有一个或几个羟基官能团的物质。

包括葡萄糖、果糖、五碳糖、棉子糖、麦芽糖、半乳糖等。醇类有丙三醇、丁二醇、甘露糖醇、山梨糖醇等。

②酸味物质

来源

原料

发酵

包括: 酒石酸、苹果酸、柠檬酸、乳酸、琥珀酸等。

含量: 2~7g/L

③咸味物质

葡萄酒中咸味物质的含量约2~4g/L。主要为磷酸盐、硫酸盐、亚硫酸盐、酒石酸盐和苹果酸盐等。咸味物质能赋予葡萄酒口味新鲜感。

④苦味和涩味物质

主要有花色苷、黄酮类、缩合单宁酚类化合物,它们能赋予葡萄酒一定的颜色和特殊的苦涩味。

⑤香味物质

酯是葡萄酒芳香的主要来源之一。

新酒一般含酯为2~3mmol/L,老酒含酯为9~10mmol/L。 另外,醇、酸都能赋予葡萄酒一定味道。

⑥其它

包括含氮物、果胶、树胶、维生素等。

含氮物约0.13~0.60g/L, 其中有20多种氨基酸;

维生素有V_C、V_{B1}、V_{B2}、V_{B6}、V_{B12}、泛酸、烟酸等。

2.保健作用

对神经中枢起作用,调节人体肌肉的紧张度给人以舒适、欣快的感觉。

可以帮助消化,防止便秘 红葡萄酒中的单宁,可以增强肠道肌肉系统中平滑肌纤维的 收缩性。山梨醇有助于胆汁的分泌。

经常饮用能补血、抗贫血葡萄酒中含有铁、 V_{B12}

第三节

葡萄汁的制备

一、葡萄酒酿造前的准备工作

对设备进行全面检查,并对厂区环境、厂房、设备、用具等进行清洗、消毒和杀菌。

二、分筛

将不同品种、不同质量的葡萄分别存放,以提高葡萄的平均 含糖量,减轻或消除成酒的异味,增加酒的香味。

分选工作最好在田间采收时进行。分选后应立即送往破碎机 进行破碎。

三、破碎与除梗

目的: 将果粒破碎, 使葡萄汁流出, 并保证籽粒完整。

注: 在破碎过程中,葡萄及其浆、汁不得接触铁、铜等金属。

四、压榨和渣汁的分离

在白葡萄酒生产中,破碎后的葡萄浆提取自流汁后,还必须经过压榨操作。一般进行2~3次压榨。

自流汁: 在破碎过程中, 自动流出来的葡萄汁。

压榨汁:加压后流出来的葡萄汁。

五、葡萄汁的改良

葡萄原料如果在适合的栽培季节,通常可以得到满意的葡萄汁,但若气候失调,葡萄中的酸多糖少,则生产出的葡萄汁达不到工艺要求,这就需要对葡萄汁进行改良。

1.糖度的调整

为保证葡萄酒的酒精含量,酿造不同品种的葡萄酒就需要葡萄汁有固定的糖浓度。

通常添加浓缩葡萄汁或蔗糖。

①添加白砂糖

操作如下:

- ①准确计量葡萄汁体积;
- ②将糖用葡萄汁溶解制成糖浆;
- ③加糖后要充分搅拌,使其完全溶解并记录溶解后的体积。 最好在酒精发酵刚开始一次加入所需的糖。

②添加浓缩葡萄汁

- ①先对浓缩汁的含糖量进行分析;
- ②求出浓缩汁的添加量。

添加时要注意浓缩汁的酸度,若酸度太高,需在浓缩汁中加入适量碳酸钙中和,降酸后使用。

2.酸度的调整

葡萄汁在发酵前一般酸度调整到6g/L,即pH3.3~3.5。

- ①若酸度低,可添加酒石酸或柠檬酸;生产红葡萄酒一般添加酒石酸,生产白葡萄酒添加柠檬酸。
- ②若酸度高可添加降酸剂: CaCO₃等

第四节

SO。的添加

1.杀菌和抑菌

SO₂能抑制微生物的活动。 细菌对SO₂最敏感,其次是尖端酵母 而葡萄酒酵母抗SO₂的能力强。

2.澄清作用

由于SO₂的抑菌作用,使发酵起始时间延长,从而使葡萄汁中的杂质有时间沉降下来并除去。

3.溶解作用

添加SO₂后生成的亚硫酸有利于果皮中色素、酒石、无机 盐等的溶解,增加酒的色度和浸出物的含量。

4.抗氧化作用

SO₂能防止酒的氧化,特别是能阻碍和破坏葡萄中的多酚氧化酶,防止氧化浑浊。

5.增酸作用

- ①SO₂阻止了分解酒石酸与苹果酸的细菌活动;
- ②亚硫酸氧化成硫酸。

二、SO₂的添加

1.添加量

取决于葡萄品种、葡萄汁成分、温度、酿酒工艺等。

国际葡萄栽培与酿酒组织提出葡萄酒中总SO2允许含量为:

干白葡萄酒350mg/L

干红葡萄酒300mg/L

甜酒450mg/L

游离SO₂含量为:

干白葡萄酒50mg/L

干红葡萄酒30mg/L

甜酒100mg/L

气体——燃烧硫磺绳、硫磺纸、硫磺块,产生 SO_2 气体,一般用于发酵桶的消毒。现已很少使用。

液体——液体SO2、亚硫酸等。使用浓度为5%~6%。

固体——常用偏重亚硫酸钾,加入酒中与酒石酸反应生成SO₂。

使用时将其溶于水中,配成10%溶液(含 SO_2 约5%左右)。

第五节 葡萄酒酵母及其培养

一、葡萄酒酵母的培养与添加

斜面试管菌 —— 麦芽汁斜面试管培养 —— 液体试管培养

酒母 — 酒母罐培养 — 卡氏罐培养 — 三角瓶培养

酒母的添加:一般应在葡萄醪中加 SO_2 后 $4\sim8h$ 加入,以减少游离 SO_2 对酵母的影响。

酒母用量一般为1%~10%。

二、葡萄酒活性干酵母的应用

1.复水活化后使用

35~42℃的温水 或5%蔗糖溶液 或未加SO₂的葡萄汁

加入10%活性干酵母, 复水活化20~30min后使用。

2.活化后扩大培养制成酒母使用

注意活化后酵母的扩大培养不超过3级

第六节葡萄酒的发酵

- 一、发酵机理
- 1.酒精发酵

 $C_6H_{12}O_6$ —— $CH_3CH_2OH + CO_2 + 热量$

酒精发酵是葡萄酒酿造最主要的阶段,其反应非常复杂,除生成酒精、CO₂以及少量甘油、高级醇类、酮醛类、酸类、 酯类等成分外,还生成磷酸甘油醛等许多中间产物。

2.葡萄酒色、香、味的形成

(1)色泽

葡萄酒中的色泽主要来自葡萄中的花色素苷。 发酵过程中产生的酒精和CO₂均对花色素苷有促溶作用。 单宁也有增加色泽的作用。故发酵阶段,酒液色泽会加深。

(2)香气

来源:

- (1)葡萄皮中 葡萄果香,即葡萄中含有的特殊香气成分;
- (2)发酵过程中产生 如酯类、高级醇、缩醛等成分;
- (3)贮存过程中形成 有机酸与醇类形成酯。

(3)葡萄酒的口味成分

主要是酒精、糖类、有机酸。

同一种成分往往对色、香、味有不同程度的作用。故葡萄酒的色、香、味三者的成分是很难截然分开的。

二、红葡萄酒发酵工艺

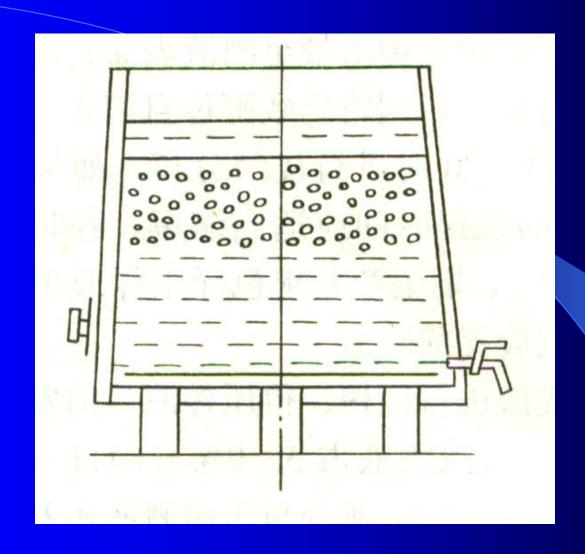
1.传统发酵工艺

发酵容器清洗后,用亚硫酸杀菌

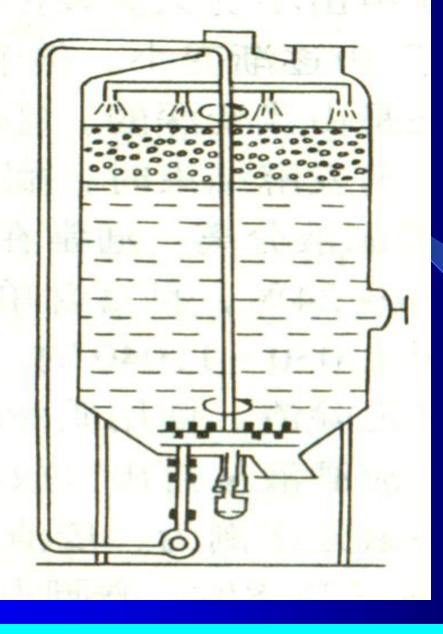
装好压板、压盖,

泵入葡萄浆(充满系数为75%~80%)

按规定添加 SO_2 加盖、封口



(2)前发酵


主要进行酒精发酵、浸提色素物质和芳香物质。发酵温度为26~30℃。当酒液残糖量降至0.5%、发酵液面只有少量CO₂气泡,"酒盖"下沉,发酵温度接近室温,这表明前发酵结束。

发酵后酒液质量要求:

呈深红色或淡红色;有酒精、 CO_2 和酵母味,但不得有霉、 臭、酸味,酒精含量9%~11% ,残糖0.5%,挥发酸 ≤0.04%。

带压板装置的开放式发酵池

新型密闭式红葡萄酒发酵罐

(3)酒醪固液分离

先将自流酒液从排除口放净,然后清理出皮渣进行压榨, 得压榨酒。

(4)后发酵

后发酵的目的:

继续残糖的发酵

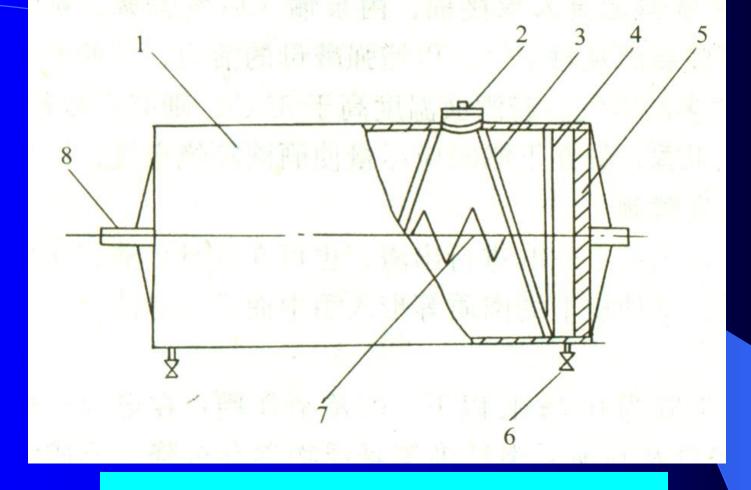
澄清作用

排放溶解的CO₂

氧化还原及酯化作用

苹果酸—乳酸发酵的降酸作用

后发酵的管理:


品温控制在18~20℃

每天测品温和酒度2~3次

定时检查水封状况,观察液面

2.旋转罐法发酵工艺

旋转发酵罐是一种比较先进的红葡萄酒发酵设备。 利用罐的旋转有效地浸提葡萄皮中的单宁和花色素。 如下图所示。

Seity型旋转罐

1.罐体 2.进料排渣口、入孔

3.螺旋板

4.过滤网

6.出汁阀门 7.冷却蛇管

8.罐体短轴

5.封头

Vaslin旋转罐

1.出料口 5.温度计 9.滚轮装置 2.进料口 6.罐体 10.过滤网 3.螺旋板 7.链轮 11.电机 4.冷却管 8.出汁阀门 12.出料双螺旋

第九节 葡萄酒的后处理

一、下胶

下胶——添加澄清剂使葡萄酒澄清的操作。

下胶材料

有机物 —明胶、蛋清、鱼胶、干酪素、单宁等;

无机物 —皂土、硅藻土等。

- 1.明胶——单宁法
- ①明胶及单宁用量

干白葡萄酒的明胶用量一般为1~10g/100L,单宁用量一般为明胶的30%~100%。

②下胶操作

先进行小试,确定添加量。

将所需单宁溶解在少量的葡萄酒中,用倒池的方法, 在半小时内加入酒池中。静置24h。 将明胶用冷水浸泡12h,倒去冷水,加入一定量清水,在70~80℃下,充分搅拌、溶化,加入酒中。

下胶后的葡萄酒应静置7d,再去除酒脚。

2.皂土法

皂土分两次添加:

第一次——在调配前添加0.03%;

第二次——调配后,在冷冻桶中再加0.01%,并进 行一定时间的连续搅拌,促使酒石析出。

二、热处理和冷处理

1.热处理

作用:

能使酒较快的获得良好的风味, 有助于提高酒的稳定性。

操作:

在密闭容器内,将葡萄酒间接加热至67℃,保持15min,或70℃保持10min即可。

2.冷处理

处 理 温 度: 高于酒的冰点0.5~1.0℃。

冷处理时间: -4~-7℃下冷处理5~6d。

复习思考题

- 1. 葡萄酒可分为哪些种类?
- 2. 生产葡萄酒的优良葡萄品种主要有哪些?
- 3. SO₂在葡萄酒酿造中的作用和使用方法是什么?
- 4. 在葡萄酒生产中如何控制苹果酸——乳酸发酵?

